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ABSTRACT

The results of creep-buckling expgr1ments on long, simply-supported
plates of aluminum alloy 2024-0 at 500 F under axial compression were
correlated with a previously developed theory for perfect plates. Com-
pressive-creep properties of the test material were obtained to develop
the theoretical results. The plate experiments were performed using a
square-tube configuration after an evaluation program indicated that the
conventional vee groove-knife edge arrangement for simulating simple support
was unsatisfactory for use at elevated temperatures. The theory was found
to have predictive value for plate creep buckling when used in normalized
form. A simplified approach for predlctlng creep crippling was also corre-
lated with the test data ﬁ% ”

This technical documentary report has been reviewed and is approved.
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1. Introduction

A theory of creep buckling of perfect plates and shells had been
developed as part of the creep buckling investigation (1). It was the
objective of the experimental program reported herein to obtain creep
buckling data on long plates for correlation with the previously develop-
ed theory. In addition, test data on creep crippling were obtained and
correlated with a proposed method of analysis.

A, Boundary Conditions:

The major problem in performing buckling experiments whose results
are to be correlated with theory, is simulating the mathematical boundary
conditions required by the theory. If the theory described in Ref.(l) is
applied to long plates, the boundary conditions along the loaded edges
are not of major significance, although a small correction to the buckling
coefficient would be necessary to take into account the actual elastic
restraint at the ends.

The experimenter has a choice for the unloaded plate edges of using
either clamped or simply supported edges since theoretical values of the
buckling coefficient exist for each condition. Simulating clamped boundary
conditions on the unloaded edges of a specimen plate and loading such a con-
figuration however, present formidable difficulties in the laboratory. Sim-
ulating simple support boundary conditions, while not in the category of a
routine laboratory operation, presents fewer difficulties than simulating
clamped edges.

B. Vee Groove-Knife Edge Simple Support Simulation:

A commonly used configuration for simple support on the unloaded edges
of long plates employs a support jig containing vee grooves. The unloaded
specimen edges are bevelled to fit into the grooves of the jig. Such a jig
must meet the appropriate boundary conditions of zero lateral deflection
and zero moment. In addition it must not introduce significant in-plane
forces into the plate and it must offer little restraint to longitudinal
compression of the plate., The ideal support jig would simulate the mathe-
matically imposed boundary conditions as well as the other criteria while
allowing plate growth due to thermal expansion and Poisson effects as well
as allowing in-plane edge displacements due to buckling.

A support jig was constructed with the vee groove-knife edge configura-
tion. A series of evaluation experiments, whose results are described in
detail in the Appendix of this report, indicated that although this arrange-
ment was satisfactory for room temperature experiments on elastic plates,

Manuscript released by Authors August 1962 for publication as an
ASD Technical Documentary Report.



significant frictional effects developed at the 500°F test temperature in
both short time buckling and creep buckling experiments. These anomalous
effects were detected by comparing autographically recorded and shortening
data from the buckling experiments with the appropriate compressive short
time stress-strain data and compressive creep data obtained from independent
tests on material property specimens.

C. Square Tube Configurations:

It was clear that frictional effects had to be eliminated in the
experiments if the correlation of test data with creep buckling theory
was to be meaningful. An experimental configuration in which the mathe-
matical boundary conditions can be simulated and in which frictional
effects are absent is the square tube. As is well known, this configura-
tion of four orthogonal flat plates does simulate simple support since
after buckling but prior to failure, the four unsupported edges remsin
straight (w = 0) and the corner angle remains a right angle (82W/az = 0).
In the past difficulties in obtaining such tubular material in aircraft
structural alloys or difficulties in fabricating this configuration from
solid stock have discouraged its use in stability studies of flat plates.
However, in view of the serious limitations of jigs in simulating the
boundary conditions without introducing extraneous effects into the speci-
men, it appeared that any extra efforts which would be required to fabri-
cate square tube specimens would be justified.

Although it was not possible to obtain extruded square tubes in the
2024 aluminum alloy, extruded channel sections in this alloy were avail-
able. These were welded together to form the desired configuration using
strips of the same alloy as the filler material.

The experiments described herein were conducted with square tube speci-
mens of two wall thicknesses. A set of long thin wall specimens was used
for the plate experiments and a set of shorter thick walled specimens for
obtaining compressive short time stress-strain and compressive creep pro-
perties of the test material.




2, Square Tube Experiments

A, Plate Specimens:

Extruded aluminum alloy 2024-T3 channel was received with the
following cross section dimensions: thickness 1/8 in.; base width 1 in.;
leg height 5/8 in. 1In order to fabricate plates with a thickness ratio
of approximately 25, the thickness was uniformly reduced to 0.040 in. by
machining the inner surfaces of the channel. This procedure maintained
the 1 in. base width. The leg height was reduced to 1/2 in. and the free
edges were externally bevelled to receive the filler material. Pairs of
prepared channel sections were welded together to form square tubes using
strips of the same aluminum alloy 2024-T3 as filler material. Excess
filler material was machined away and the square tube sections were cut
into 4-1/8 in. lengths with the ends held parallel within * 0.0005 in.
The specimens were then annealed to the "0" condition by the following
heat treatment: 775°F 2 hrs.; cool to 500°F at 40°F/hr; furnace cool.

B. Material Property Specimens:

Welded square tube specimens with the full 1/8 in. wall thickness and
3 in. long were fabricated in the same fashion as the specimens., These
were annealed simultaneously with the plate specimens, thus assuring that
all specimen material would undergo exactly the same heat treatment.

C. Buckling Experiments on Plates at 500°F:

Instrumentation which had previously been developed for lateral deflec-
tion and end shortening measurements on the vee groove-knife edge configura-
tion was adapted for use with square tube specimens. A parallelogram link-
age employed for lateral deflection measured the maximum buckle amplitude
present on the two opposite unwelded plates of the four plate configuration
irrespective of where it occurred.

The end shortening measurements were made over a 3-5/8 in. gage length
with gage points located 1/4 in. from the specimen ends on two opposite
sides of the configuration. The separate end shortening measurements were
electrically averaged. A jig was constructed to support the instrumentation
and the various deflections were transferred out of the heated area to
differential capacitor instrumentation.

A photograph of the installed specimen and instrumentation is shown in
Figure 1. Also shown in the photograph is a bearing block used to transmit
the load from the movable ram of the testing machine to the specimen. A
second bearing block for the stationary ram is integral with the instrumen-
tation jig.

Procedures, loading equipment and autographic recording instrumentation
were identical to that employed previously in creep buckling experiments on

3



columns and are described in detail in Ref.(2).
The following experiments were performed, each in duplicate at 500°F:

1. Short time buckling and crippling.

2. Creep buckling and creep crippling at the following applied stress
levels: 8400 psi, 7840 psi, 7280 psi, and 6720 psi. (Three ex-
periments were performed at 7840 psi).

Crippling times ranged from several minutes to several hours over the range
of applied stresses. Crippling was evidenced by the simultaneous rapid in-
crease of end shortening and lateral deflection which occurred, as will be
subsequently shown, when the lateral deflection reached approximately 60%

of the thickness.

A crippled specimen together with an untested specimen is shown in
Figure 2. It is evident that a number of buckle wave forms are present
with one such wave form of slightly greater amplitude than the others. A
careful examination of all tested plate specimens revealed that the maximum
amplitude wave form did not occur in the same area in each specimen. This
was an indication of lack of bias in the test procedure to favor a particular
failure location.

D. Compressive Properties Tests at 500°F:

Using procedures, loading apparatus and autographic recording instru-
mentation as previously described in Ref.(2), both short time and creep pro-
perties in compression were obtained using 1/8 in. thick wall, welded square
tube specimens. Strain was measured over a 2 in. gage length in the follow-

ing tests, each performed in duplicate:

1. Short time compressive stress strain.
2. Compressive creep at the following applied stress levels: 8400 psi,

7840 psi, 7280 psi, and 6720 psi.

Care was taken during the experiments to maintain a strain rate during load-
ing of approximately 0.04 in/in/min, the value which had been used in the
short time and creep plate buckling experiments.

The scatter of the strain values both for the short time tests and the
creep tests was found to be quite small. A maximum variation of % 2% was
found in the short time tests while the maximum scatter for the creep tests

was found to be as follows:

8400 psi applied stress * 4.5%
7840 psi applied stress * 0.9%
7280 psi applied stress * 3.2%
6720 psi applied stress * 4.6%




3. Test Results

A. Properties of the Test Material at 500°F:

The average short time compression stress strain curve of the aluminum
alloy 2024-0 test material at 500°F is shown in Figure 3. Average com-
pression creep curves of the specimen material are shown in Figure 4.

The most probable value of the compression modulus of elasticity at
500°F under the strain rate conditions of the test as determined from the
short time tests and from the recorded stress strain curve during loading
prior to creep tests was 8.0 x 106 psi.

B. End Shortening and Lateral veflection Data from Buckling Tests at 500°F:

End shortening and lateral deflection data as a function of stress
level from short time buckling tests are shown in Figure 5. Also shown in
the figure is the average short time compression stress strain curve.

End shortening and lateral deflection data as a function of time are
shown in Figures 6 through 9 for the following applied stress levels:
8400 psi, 7840 psi, 7280 psi and 6720 psi. 1In one experiment at 8400 psi
there was instrumental failure in the end shortening recording system,
hence the data are not given.

Also shown in the figures are the appropriate creep curves for com-
parison with the end shortening data. In computing the value of the plate
width to thickness ratio it has been shown in Ref.(3) that the inside width
of the square tube is the pertinent measurement to be used. The appropriate
value for the width to thickness ratio for the specimens used in this in-
vestigation was then b/h = 23,0,

C. Discussion of Experimental Results:

The end shortening curve closely follows the pertinent stress-strain
or creep curve in most experiments until significant lateral deflections
occur. This is an indication that the instrumentation and its supporting
jig introduce little restraint to the square tube plate specimens. It is
interesting to note that the first appearance of lateral deflections appears
to have little influence on the end shortening curve, hence the latter is
an insensitive indication of plate buckling. Plate crippling however is
accompanied by a large increase of end shortening.

Since it is difficult, experimentally, to fabricate and test a perfect
plate specimen, the choice of where buckling first occurs in terms of lateral
deflection becomes more or less arbitrary. In three experiments however, the
specimens were sufficiently ''perfect' such that lateral deflections occurred
quite suddenly with a sharp break in the lateral deflection curve. These
were the two short time experiments and one creep buckling experiment at



7280 psi (specimen No. 23).
D. Accuracy of the Data:

The loading equipment and recording instrumentation used in this
study were the same as had been used previously for studies on columns.
The statement on experimental accuracy given in Ref.(2) as applied to
equipment and instrumentation would apply to the current experiments.
Major sources of error are summarized below:

1. Extensometer stability * 0.1% per day.

2. Maximum extensometer error % 1%.

3. Maximum loading system error * 0.5%.

4, Maximum spatial and temporal temperature variation
5. Recorder stability * 0.25% per month.

6. Timing errors were negligible.

H+
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4, Correlation of Test Data with Theory

In the correlation of plate buckling data with theory an inherent
difficulty lies in establishing from the experimental data when buckling
has occurred., This is due to the fact that a plate in a short time test
can continue to support increasing loads after buckling and sudden collapse
does not occur until the crippling or failure load is reached. The latter
can be considerably in excess of the buckling load. 1In the case of creep
experiments where a constant load is applied the plate can continue to
support the applied loading for relatively long times after buckling.

The use of a lateral deflection criterion for buckling of imperfect
plates is far from ideal since the degree of imperfection will influence
the lateral deflection values. However, in the absence of other more
rational criteria, we have arbitrarily assumed that buckling has occurred
when the lateral deflection reaches 5% of the plate thickness. In the few
relatively 'perfect' specimens the buckling stress was chosen to coincide
with a sharp break in the lateral deflection curve,

A, Short Time Buckling:

An appropriate solution for the short time plastic buckling of long
simply supported plates has been given in Ref.(4) as:

2
= ZKNE_ b2 ¢H)
cr 2.'b
12(1-ve)
where
2
(1-v)) E E
_ v E 1,350
T [1+G+3 ES) ] (2)
and
v=20,5- 0.2 ES/E 3)

For very long simply supported plates, k = 4, However, in the experi-
ments performed the aspect ratio of the plates was approximately 4 and the
loaded edges could be considered clamped. 1In this case it is shown in
Ref. 4 that k = 4,15,

From Eq.(1l)

&) (4)



Using the appropriate values in Eq.(4)

g
cr
5 = 0.00709 (5)

The left hand side of Eq.(5) can be evaluated with the aid of Egqs.(2)
and (3) and the short time compression stress-strain curve to find the
value of o, which corresponds to Eq.(5). This value has been found to be
o = 10.0%st.

Referring to Figure 5, sharp breaks in the lateral deflection curves
for the two specimens shown occur at 10.4 ksi and 10.2 ksi. With this
criterion of buckling, the errors are +4% and +2% respectively. The source
of this discrepancy has not been determined, however a similar discrepancy
was observed in the short time buckling of aluminum alloy columns at 500°F
as reported in Ref. 6. The probable cause of this discrepancy for the
plates is believed to be the stiffening effect of small radii at the inner
corners of this square tube.

B. Creep Buckling:

In Ref.(l) it was shown that creep buckling solutions are analogous to
plastic buckling solutions as given by Eq.(l) with the stipulation that the
value of 1 becomes n, . The subscript here indicates that the appropriate
material properties are derived from constant strain rate stress-strain
curves which in turn are derived by a graphical process from the compressive
creep data. The process is described in detail in Ref.(l) but is summarized

below:

The compressive creep curves given in Figure 4 are graphically
differentiated to obtain strain-strain rate data as shown in Figure 10.
Constant strain rate stress-strain curves from this data and shown in
Figure 11 are analyzed to obtain 1, and v. On a plot of n,E and o a
straight line corresponds to a particular value of the b/h ratio.

Shown in Figure 12 are such data with the straight line appropriate

to b/h = 23 and k = 4.15, the conditions for our experiments. Each
intersection of this straight line with the curves of n.E represents

an unique set of conditions for creep buckling which have been given

in Figure 13, In order to predict creep buckling times, one first
finds the appropriate strain rate for buckling for the applied stress
level from Figure 13. Then using an inverse process one uses Figure 10
and Figure 4 to determine the theoretical creep buckling times.

Using the process outlined above, the theoretical curve shown as the
solid curve in Figure 14 was obtained. Shown in the figure by open circles
are the experimental times for lateral deflections to reach 5% of the thick-
ness which we have arbitrarily designated as the buckling time. The crippling
or failure times have been indicated on Figure 14 by closed circles. The




data presented in the figure were obtained from Figures 6 through 9.
Short time data from Figure 5> are also given in Figure 14, It is evi-
dent from the figure that the short time discrepancy is reflected in
the creep buckling results, This result was previously observed for
the column tests of Ref.(6).

An approach to creep crippling involves the use of the secant modulus
as described in Ref.(7). 1If it is assumed that

n=E_E (6)

and Eq.(6) is substituted in Eq.(4)

ccr nzk h,2
E_ 7.6 (7
s 12(1-v
e
But
E = ole (38)
Hence
2
k h,2
for T 7% ®
12(1-ve)

Using the appropriate values in the right hand side of Eq.(9) results in

€ = 7090 micro-in/in (10)

Eq.(10) implies that the plate will cripple when the end shortening strain
reaches the value computed. The secant modulus results are shown as the
broken curve in Figure 14,

C. Normalized Stress Representation of Creep Buckling:

A more rational correlation between the creep buckling data and the
theory can be made if the discrepancy in the short time results are sur-
pressed, in view of the apparent dependence of creep buckling upon the
short time buckling behavior. This can be accomplished by normalizing the
theoretical creep buckling stresses to the appropriate short time theore-
tical critical stresses and by normalizing the applied stresses to the
appropriate short time buckling stresses for the experiments. Such a nor-
malized representation is shown in Figure 15. The normalized data are in



substantial agreement with the normalized theory indicating the procedure
to be valid for the prediction of creep buckling times.

D. Normalized Stress Representation of Creep Crippling:

Although the constant strain rate theory was developed for the buck-
ling of plates, it seemed interesting to examine its predictive value for
plate crippling in normalized form. The theoretical creep buckling curve
was normalized as before. The experimental applied stresses were normalized
to the short time crippling stresses. The results of this normalizing pro-
cedure are given in Figure 16 as the solid curve. A similar normalizing
procedure was applied to the secant modulus hypothetical approach and the
results are shown in Figure 16 as the broken curve. As in the case of creep
buckling the data are in substantial agreement with both the constant strain
rate approach and the secant modulus approach. In view of the facility with
which the secant modulus hypothesis can be applied, it could be recommended
for prediction of creep crippling times when used in normalized form.
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5. Conclusions

[ A rather significant conclusion that is apparent from the test data
analyzed herein for aluminum alloy 2024-0 simply supported plates at 500°F
as well as data previously analyzed for columns in Ref.(6) is concerned
with the short time buckling stresses at elevated temperatures. It appears
that the elevated temperature buckling stress can significantly exceed the
corresponding theoretical value. The short time behavior is reflected in
the creep buckling and creep crippling results. As a consequence of this
short time behavior, it is necessary to correlate creep buckling theory
with test data on a non-dimensional stress basis.

At the normalized representation the constant strain rate creep buck-
ling theory represents a lower bound for creep buckling., The secant modu-
lus approach shows reasonably good correlation with the creep crippling
test data. It would appear that the constant strain rate theory is associa-
ted with the initial development of lateral deflections in the plates and
the secant modulus is associated with crippling or failure of the plates,
Thus it is concluded that the constant strain rate plate creep buckling
theory has distinct predictive value for creep buckling,

The results and conclusions of this investigation suggest that short
time elevated temperature tests of plates are required to establish a base
point for creep buckling and creep crippling. Using this base point the
normalized constant strain rate plate creep buckling theory may be utilized
to construct absolute creep buckling predictions., The normalized secant
modulus approach appears to provide a particularly simple approach for the

prediction of creep crippling of plates. &"”’j>
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FIGURE 1 SQUARE TUBE PLATE SPECIMEN INSTALLED
IN INSTRUMENTATION-LOADING JIG. ‘

FIGURE 2 UNTESTED AND CRIPPLED SQUARE
TUBE PLATE SPECIMENS,
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APPENDIX

The conventional method of simulating simple support boundary conditions
involves the use of the vee groove-knife edge configuration. 1In an early
series of experiments we adopted such a configuration and designed a speci-
men edge support jig containing vee grooves to receive plate specimens
whose unloaded edges had been bevelled.

A, Plate Jig Construction:

Vee grooves had been ground in Inconel-X segmented flat springs and
these were mounted in a boxlike jig. Instrumentation was designed and
constructed to measure end shortening and lateral deflection of the plate.
End shortening measurements were made separately on the two unloaded plate
edges by means of extensometers and the average end shortening was recorded.
A parallelogram linkage, employed for lateral deflection, measured the max-
imum buckle amplitude on the plate irrespective of where it occurred. This
instrumentation was similar in design to that shown in Figure 1.

It is necessary to measure both lateral deflection and end shortening
and to obtain independently the pertinent compressive properties of the
material, The lateral deflection measurements indicate when significant
lateral deflections develop and when failure occurs. By comparing end short-
ening with the pertinent compressive data, the presence of unsuspected fric-
tional effects which may be contributed by the supporting jig are detectable.

B. Elastic Evaluation of Plate Jig:

Our past experience in conducting column buckling experiments indicated
that short time tests in which the element undergoes elastic buckling are
valuable to check out the supporting jig and the instrumentation. A com-
parison of the experimental buckling stress with the theoretical value in-
dicates the efficacy of the support in simulating the theoretical boundary
conditions. In a plate with initial imperfections it is difficult to ascer-
tain when buckling has occurred since the element can continue to support
load after buckling. However, Gerard (5) has shown that the failure or
crippling of simply supported elastic plates can be determined from

Bf 1/2,0.85
5o = 142 [@/b)(E/o )77

cy

(11)

The value of the numerical multiplier on the right hand side of Eq.(11)
is determined by the boundary conditions on the unloaded edges and the 1.42
value is appropriate for simple support.

A series of tests were performed on long elastic plates of aluminum
alloy 2024-T3 in the spring-vee groove supporting jig at room temperature.
The approximate plate dimensions were 1 in., wide, 0.025 in. thick and 4.5 in.
long with b/t = 40, Various values of edge clamping force were employed in
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different experiments.

The test results for 4 specimens are shown in Figure 17 in the form
of the end shortening vs. stress curves. For these specimens the value
of the failure stress, as computed from Eq.(1l) was found to be
of = 27,300 psi. The elastic buckling stress, computed from the conven-
tional formula for simply supported plates was o, = 25,000 psi, These
values are shown in Figure 17 together with the stress strain curve of
the material as determined from compressive coupons tested in a compression

jig.

In the first test, specimen EL-2, the edge supports were firmly clamped
to the specimen introducing an appreciable in plane compressive stress per-
pendicular to the direction of loading. The failure stress for this speci-
men as shown in Figure 17 is within 0.4 percent of the theoretical value.
However, the slope of the end shortening curve has a considerably higher
value than that of the compressive stress strain curve.

In the second experiment with specimen EL-3, only enough edge force
was introduced through the spring supports to assure the correct position-
ing of the specimen. The specimen failed at a stress of 23,200 psi as shown
in Figure 17 which is lower than both the theoretical failure stress and the
buckling stress. However, the end shortening response followed the com-
pressive stress strain curve. The appearance of the failed specimen was
typical of the buckling of a wide column on an elastic foundation.

The supporting jig was modified so that approximately 7 lbs. load could
be applied through the edge supports to retain the specimen and prevent wide
column buckling and failure. This introduced a stress of approximately
250 psi in the plane of the specimen perpendicular to the loading direction.

Two specimens were tested with the modified arrangement EL-4 and EL=5.
As shown in Figure 17, the end shortening response follows the stress strain
curve until approximately 23,000 psi. At this stress level, lateral deflec-
tions occur as indicated from the lateral deflection record (not shown) and
the specimens fail within * 0.4 percent of the theoretical value.

On the basis of the tests of EL-4 and EL-5 the simple support simulation
jig was initially acceptable for the test program. It is interesting to note
however that in the case where appreciable restraint was introduced, in speci-
men EL-2, the theoretical failure stress was still obtained, notwithstanding
the fact that the specimen end shortening departs from the stress strain curve.
This indicates that only at failure is the full applied load developed in the
specimen and that prior to failure a portion of the applied load is taken out
through friction by the supporting mechanism.

C. Initial Plate Tests at 500°F:

Plate specimens with b/h = 40 and b/h = 25 were machined from 0.040 in.
thick aluminum alloy 2024-T3 and these were annealed to the 2024-0 condition
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prior to testing. Compression test coupons were prepared in a similar
manner and annealed together with the plate specimens. Short time com-
pressive stress strain and creep tests were performed on the test coupons,
the latter at a number of applied stress levels. Short time stress strain
tests were performed on the coupons at an initial strain rate of .04 min'l,
a value which was used for the short time plate tests and for the load
application during the coupon creep and plate creep tests.

Short time and creep buckling tests were performed on plates using
the same arrangement as had been employed in the elastic plate experiments.,
An allowance was made in the tightening procedure to take into account the
differential expansion of specimen and jig in the heating to the 500°F test
temperature.

When the end shortening data from plate tests were compared with the
appropriate coupon data, it was found that for both the short time tests
and the creep buckling tests the plate strain values were always well be-
low those for the coupons at comparable stress levels and comparable times.
Strain rate effects during loading were eliminated as a cause of the dis-
crepancy.

On the other hand a calculation of the short time failure stress based
upon Eq.(11) for b/h = 40 plates indicated that the initial experimental
data were within 5 percent of the theoretical values.

Frictional effects in the support mechanism were suspected as the cause
of the discrepancy and an evaluation program was initiated to gain further
insight into the experimentally revealed phenomena.

D. Evaluation Experiments on Plates at 500°F:

1, Short Time Tests: End shortening data for the initial short time
plate tests for b/h = 40 are shown as curves 1, 2 and 3 in Figure 18. The
average short time compressive stress strain curve is also shown. Theore-
tical values of the buckling stress and failure stress are also shown in
the figure.

Two experiments were performed with a greatly reduced edge clamping
force just sufficiently large to maintain specimen alignment. The end shorten-
ing response is shown as curves 4 and 5 in Figure 18. Here the experimental
failure stress is below the theoretical value but above the buckling stress.
The end shortening curve lies above the stress strain curve. The two speci-
mens failed in the manner of wide columns on an elastic foundation.

In all five experiments there appeared to be frictional effects in the
jig. It was suspected that during the heating process, minute creep dis-
tortions of the specimen edges in the small spaces between the vee groove
spring segments were introducing longitudinal restraint on the specimen.

The springs were replaced by solid blocks into which had been ground similar
vee grooves to accommodate the plate specimen.
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A second series of tests was performed using comparable edge clamp-
ing forces with the modified arrangement. The end shortening data for
these experiments are shown in Figure 18. In curves 6 and 7 the edge
clamping forces were comparable to those used in tests 1, 2 and 3. On
the average there appears to be only a slight improvement in reducing
friction. In the final short time experiment shown in curve 8 the clamp-
ing forces were comparable to those used in tests 4 and 5 and were just
sufficiently large to position the specimen. The specimen failed below
the theoretical buckling stress in the wide column mode. Yet even here
friction has not been eliminated since the end shortening curve is still
above the short time compressive stress-strain curve.

2. Creep Tests: A comparable series of evaluation experiments using
the segmented spring and the solid vee groove edge supports was performed
on b/h = 25 plates at 500°F under an applied stress of 6,720 psi. For
these plates the theoretical short time buckling stress 0., = 10,200 psi,
and the failure stress is in excess of 13,000 psi. The end shortening
results are shown in Figure 19. Also shown in the figure are the lateral
deflection data and the appropriate compressive creep data for the same
applied stress level.

In the experiments for curves 9 and 10, spring vee groove supports
were used with the normal clamping force. In the experiments for curves
11, 12 and 13 solid vee groove supports were employed.

1f no frictional restraints were present we should expect the end
shortening curve to follow the compressive creep curve until significant
lateral deflections of the plate occurred. Thereafter, as the buckle wave
form developed and lateral deflections increased, the end shortening curve
should show larger creep strains in comparable times than the compressive
creep curve. For all the data shown in Figure 7 the end shortening strains
are lower than the creep strains even after significant lateral deflections
have taken place and only just prior to failure does the end shortening in-
crease above the creep curve. This is true for both types of supports al-
though the solid support is somewhat superior to the segmented spring. In
both however, the frictional effects are sufficiently large to preclude the
use of the data for comparison with theory.

E. Conclusions:

Based upon the evaluation experiments, the following conclusions can
be drawn:

1. The knife edge-vee groove arrangement can be employed to simulate
simple support boundary conditions on elastic plates at room temperature.

2. At elevated temperatures in two different knife edge-vee groove con-
figurations, there were significant frictional effects which served to re-
strain the end shortening of the plate.
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3. Although frictional effects are present in knife edge-vee groove
configurations, these effects appear to have little influence on the
crippling strength of plates in short time experiments.

It was on the basis of this evaluation program that the vee groove-
knife edge configuration was abandoned and the square tube configuration

adopted.
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